sam.nitk.ac.in

Mathematical Methods for Engineers (MA 713) Problem Sheet - 10

Change of Coordinate Matrix

- 1. Label the following statements as true or false.
 - (a) Suppose that $\beta = \{x_1, x_2, ..., x_n\}$ and $\beta' = \{x'_1, x'_2, ..., x'_n\}$ are ordered bases for a vector space and Q is the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then the *j*th column of Q is $[x_i]_{\beta'}$.
 - (b) Every change of coordinate matrix is invertible.
 - (c) Let *T* be a linear operator on a finite-dimensional vector space *V*, let β and β' be ordered bases for *V*, and let *Q* be the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then $[T]_{\beta} = Q[T]_{\beta'}Q^{-1}$.
 - (d) The matrices $A, B \in M_{n \times n}(F)$ are called similar if $B = Q^t A Q$ for some $Q \in M_{n \times n}(F)$.
 - (e) Let *T* be a linear operator on a finite-dimensional vector space *V*. Then for any ordered bases β and γ for *V*, $[T]_{\beta}$ is similar to $[T]_{\gamma}$.
- 2. For each of the following pairs of ordered bases β and β' for \mathbb{R}^2 , find the change of coordinate matrix that changes β' -coordinates into β -coordinates.
 - (a) $\beta = \{e_1, e_2\}$ and $\beta' = \{(a_1, a_2), (b_1, b_2)\}$
 - (b) $\beta = \{(2,5), (-1,-3)\}$ and $\beta' = \{e_1, e_2\}$
 - (c) $\beta = \{(-4,3), (2,-1)\}$ and $\beta' = \{(2,1), (-4,1)\}$
- 3. For each of the following pairs of ordered bases β and β' for $P_2(\mathbb{R})$, find the change of coordinate matrix that changes β' -coordinates into β -coordinates.
 - (a) $\beta = \{x^2, x, 1\}$ and $\beta' = \{a_2x^2 + a_1x + a_0, b_2x^2 + b_1x + b_0, c_2x^2 + c_1x + c_0\}$ (b) $\beta = \{x^2 - x + 1, x + 1, x^2 + 1\}$ and $\beta' = \{x^2 + x + 4, 4x^2 - 3x + 2, 2x^2 + 3\}$ (c) $\beta = \{2x^2 - x + 1, x^2 + 3x - 2, -x^2 + 2x + 1\}$ and $\beta' = \{9x - 9, x^2 + 21x - 2, 3x^2 + 5x + 2\}$
- 4. Let *T* be the linear operator on \mathbb{R}^2 defined by

$$T\begin{pmatrix}a\\b\end{pmatrix} = \begin{pmatrix}2a+b\\a-3b\end{pmatrix},$$

let β be the standard ordered basis for \mathbb{R}^2 , and let

$$\beta' = \left\{ \left(\begin{array}{c} 1\\1 \end{array}\right), \left(\begin{array}{c} 1\\2 \end{array}\right) \right\}.$$

Use the fact that

$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

to find $[T]_{\beta'}$.

5. Let *T* be the linear operator on $P_1(\mathbb{R})$ defined by T(p(x)) = p'(x), the derivative of p(x). Let $\beta = \{1, x\}$ and $\beta' = \{1 + x, 1 - x\}$. Use the fact that

$$\left(\begin{array}{rrr}1 & 1\\1 & -1\end{array}\right)^{-1} = \left(\begin{array}{rrr}\frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & -\frac{1}{2}\end{array}\right)$$

to find $[T]_{\beta'}$.

6. For each matrix *A* and ordered basis β , find $[L_A]_{\beta}$. Also, find an invertible matrix *Q* such that $[L_A]_{\beta} = Q^{-1}AQ$.

(a)
$$A = \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix}$$
 and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$
(b) $A = \begin{pmatrix} 13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10 \end{pmatrix}$ and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

- 7. In \mathbb{R}^2 , let *L* be the line y = mx, where $m \neq 0$. Find an expression for T(x, y), where
 - (a) *T* is the reflection of \mathbb{R}^2 about *L*.
 - (b) *T* is the projection on *L* along the line perpendicular to *L*.
- 8. Let $T : V \to W$ be a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W. Let β and β' be ordered bases for V, and let γ and γ' be ordered bases for W. Then prove that $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$, where Q is the matrix that changes β' -coordinates into β -coordinates and P is the matrix that changes γ' -coordinates into γ -coordinates.
- 9. Prove that if *A* and *B* are similar $n \times n$ matrices, then tr(A) = tr(B). Hint : Use tr(AB) = tr(BA) and $tr(A) = tr(A^t)$.
- 10. Let *V* be a finite-dimensional vector space with ordered bases α , β , and γ .
 - (a) Prove that if Q and R are the change of coordinate matrices that change α -coordinates into β -coordinates and β -coordinates into γ -coordinates, respectively, then RQ is the change of coordinate matrix that changes α -coordinates into γ -coordinates.
 - (b) Prove that if *Q* changes α -coordinates into β -coordinates, then Q^{-1} changes β -coordinates into α -coordinates.
- 11. Let *V* be a finite-dimensional vector space over a field *F*, and let $\beta = \{x_1, x_2, ..., x_n\}$ be an ordered basis for *V*. Let *Q* be an $n \times n$ invertible matrix with entries from *F*. Define

$$x'_j = \sum_{i=1}^n Q_{ij} x_i \quad \text{for } 1 \le j \le n,$$

and set $\beta' = \{x'_1, x'_2, ..., x'_n\}$. Prove that β' is a basis for *V* and hence that *Q* is the change of coordinate matrix changing β' -coordinates into β -coordinates.

12. Prove that if *A* and *B* are each $m \times n$ matrices with entries from a field *F*, and if there exist invertible $m \times m$ and $n \times n$ matrices *P* and *Q*, respectively, such that $B = P^{-1}AQ$, then there exist an *n*-dimensional vector space *V* and an *m*-dimensional vector space *W* (both over *F*), ordered bases β and β' for *V* and γ and γ' for *W*, and a linear transformation $T : V \to W$ such that

$$A = [T]^{\gamma}_{\beta}$$
 and $B = [T]^{\gamma'}_{\beta'}$.

Hints: Let $V = F^n$, $W = F^m$, $T = L_A$, and β and γ be the standard ordered bases for F^n and F^m , respectively. Now apply the results of the above exercise to obtain ordered bases β' and γ' from β and γ via Q and P, respectively.